Performance

Question: 

My framers are always complaining that the “trusses are bad.” I am looking for tolerance information that not only addresses the allowable variance in length and height, but also allowable variation in the top chord with regard to straightness (i.e. how straight should a pull string line from the top and bottom of top chord be?). Also, if trusses are set on a perfectly level wall, what variation is allowed from truss to truss (i.e. if I put a 10 ft. straight edge perpendicular to the trusses, how much can they vary in height, not just at peak or bottom but all along the top chord)?

Question: 

If trusses blew down from insufficient temporary bracing and the contractor put them back up without the knowledge of the truss manufacturer and gave the truss manufacturer a letter stating that the trusses were okay, is that sufficient? Do you know of any truss manufacturer who would accept this?

Question: 

What are the requirements on the permanent bracing of bottom chords? Can gypsum board diaphragms be used?

Question: 

Is the truss designer or the building designer responsible for calculating snow drift loads on a roof system?

Question: 

What does KD-HT mean?

Question: 

We keep having problems with dry wall joints raising on the vaulted bottom chords in the track homes that we are building. The joints run from front to back of the house and the trusses bear on the side walls. The trusses are mostly 2-point bearing (a few in the front and back of the building are tri-bearing). The trusses span 40 ft. and have a 4/12 pitch with a tile roof. Is it common to have dry wall problems as the trusses deflect? How long should the roof be loaded before hanging sheetrock? Should the heel of the truss be allowed to slide out on the top plate?

Question: 

We are experiencing problems with bouncy wood floor trusses. I'm wondering what the industry standard is on deflections (live and total load). Also, do you have any ideas on how to decrease the deflection without affecting the profit margin significantly?

Question: 

Our home caught fire last month and burned partly through a tongue and groove ceiling to the trusses. Some are charred. Our contractor did a moisture meter test. An engineer for the insurance company said the trusses were only smoke damaged & the moisture meter test is invalid (it can be set to read anything). I found one article on charred trusses, but it’s pretty vague. We do not feel safe with the insurance engineer’s assessment because some of the trusses are obviously charred. We hired an engineer who agreed with us.

Question: 

Can I safely install 3/4 in. T&G, OSB on 2x4 trusses that are 24 in. O.C.? My roof was installed over 5/8 in. plywood without clips that have caused a lot of sagging and the shingles need replacing. I want to “fix” it one time and install architecture type shingles, but the garage is 24 ft. wide and 28 ft. long without any load bearing walls. My concern is the weight on the trusses. 5/8 in. plywood weighs 52 lbs. and the OSB weighs 78 lbs. for each 4 ft. x 8 ft. sheet. The roof will require about 84 4 ft. x 8 ft. sheets to cover, which equals about 2,184 lbs.

Question: 

In a small scale multi-family residential project, I'd like to use a wood truss floor-ceiling assembly to achieve a one hour separation between units. I'd like to directly attach the drywall to the underside of the trusses & use the truss space for ducts & lighting (the floor above will be lightweight concrete on plywood sub-floor). UL assemblies do not seem to address the duct/light penetrations in such an assembly. Can I achieve a one-hour rating in such an assembly and how are penetrations addressed? Can the ducts in the truss space serve both units above and below?