Truss designers are in the right spot to mitigate potential serviceability issues.

2.3.2.4 Required Information in the Construction Documents.

The Building Designer, through the Construction Documents, shall provide information sufficiently accurate and reliable to be used for facilitating the supply of the Structural Elements and other information for developing the design of the Trusses for the Building, and shall provide the following:

(a) All Truss and Structural Element orientations and locations.
(b) Information to fully determine all Truss profiles.
(c) All Structural Element and Truss support locations and bearing conditions (including the allowable bearing stress).
(d) The location, direction, and magnitude of all dead, live, and lateral loads applicable to each Truss including, but not limited to, loads attributable to: roof, floor, partition, mechanical, fire sprinkler, attic storage, rain and ponding, wind, snow (including snow drift and unbalanced snow), seismic; and any other loads on the Truss;
(e) All anchorage designs and connections to the Structural Elements and the Permanent Building Stability Bracing required to resist uplift, gravity, and lateral loads.
(f) Truss-to-Structural Element connections, but not Truss-to-Truss connections.

(g) Criterial related to serviceability issues including:

- (1) Allowable vertical, horizontal or other required deflection criteria.
- (2) Any dead load, live load, and in-service creep deflection criteria for roofs subject to ponding loads.
- (3) Any Truss camber requirements.
- (4) Any differential criteria from Truss-to-Truss or Truss-to-adjacent Structural Element.

User (non-mandatory) note: See Commentary section §2.3.2.4(h) regarding methods to address differential deflection.

(5) Any deflection and vibration criteria for floor Trusses including:
- (i) Any strongback bridging requirements.
- (ii) Any dead load, live load, and in-service creep deflection criteria for floor Trusses supporting stone or ceramic tile finishes.

(6) Moisture, temperature, corrosive chemicals and gases expected to result in:
- (i) Wood moisture content exceeding 19 percent,
- (ii) Sustained temperatures exceeding 150 degrees F, and/or
- (iii) Corrosion potential from wood preservatives or other sources that can be detrimental to Trusses.

SPECIALIZED PROTECTION.

YOU KNOW YOUR BUSINESS IS NOT LIKE OTHERS. YOU HAVE SPECIFIC NEEDS AND RISKS THAT YOU WORRY ABOUT... THINGS LIKE DUST COLLECTION, AUTO FLEET SAFETY AND FIRE PROTECTION. YOU NEED AN INSURANCE COMPANY THAT UNDERSTANDS THESE UNIQUE RISKS AND ISSUES.

MEET MICHAEL.

Michael Culbreth has been a Loss Control Services Consultant with PLM/ILM for over 13 years. Over these years he has visited thousands of lumberyards, sawmills and wood products manufacturing operations. He lives and breathes the lumber and building material industries. Michael’s specific knowledge allows him to provide our customers with relevant and practical recommendations to protect their businesses. He understands that as a business owner there is no good time to experience a loss or disruption. Michael aims to prevent risks that are avoidable and to make sure you are adequately prepared for what may come.

He cares about your business. Let him and PLM/ILM help you keep it safe.

PENNSYLVANIA LUMBERMENS MUTUAL INSURANCE COMPANY
INDIANA LUMBERMENS MUTUAL INSURANCE COMPANY

Member of the National Association of Mutual Insurance Companies

*SHARED PURPOSE. MUTUAL VALUES.* is a registered trademark of the National Association of Mutual Insurance Companies, All rights reserved. © 2014 National Association of Mutual Insurance Companies.

On location at Edwards Wood Products, Inc. in Marshville, NC

2.3.2.4 Required Information in the Construction Documents.

The Building Designer, through the Construction Documents, shall provide information sufficiently accurate and reliable to be used for facilitating the supply of the Structural Elements and other information for developing the design of the Trusses for the Building, and shall provide the following:

(a) All Truss and Structural Element orientations and locations.
(b) Information to fully determine all Truss profiles.
(c) All Structural Element and Truss support locations and bearing conditions (including the allowable bearing stress).
(d) The location, direction, and magnitude of all dead, live, and lateral loads applicable to each Truss including, but not limited to, loads attributable to: roof, floor, partition, mechanical, fire sprinkler, attic storage, rain and ponding, wind, snow (including snow drift and unbalanced snow), seismic; and any other loads on the Truss;
(e) All anchorage designs and connections to the Structural Elements and the Permanent Building Stability Bracing required to resist uplift, gravity, and lateral loads.
(f) Truss-to-Structural Element connections, but not Truss-to-Truss connections.

(g) Criterial related to serviceability issues including:

- (1) Allowable vertical, horizontal or other required deflection criteria.
- (2) Any dead load, live load, and in-service creep deflection criteria for roofs subject to ponding loads.
- (3) Any Truss camber requirements.
- (4) Any differential criteria from Truss-to-Truss or Truss-to-adjacent Structural Element.

User (non-mandatory) note: See Commentary section §2.3.2.4(h) regarding methods to address differential deflection.

(5) Any deflection and vibration criteria for floor Trusses including:
- (i) Any strongback bridging requirements.
- (ii) Any dead load, live load, and in-service creep deflection criteria for floor Trusses supporting stone or ceramic tile finishes.

(6) Moisture, temperature, corrosive chemicals and gases expected to result in:
- (i) Wood moisture content exceeding 19 percent,
- (ii) Sustained temperatures exceeding 150 degrees F, and/or
- (iii) Corrosion potential from wood preservatives or other sources that can be detrimental to Trusses.