Overview of Solid Panel Structure (SPS) System

- Patrick Huelman & Tom Schirber
  - Cold Climate Housing Program
  - Bioproducts & Biosystems Engineering
  - University of Minnesota

- An Novel Building Technology …
  - “Studless” Wall System
  - Thin-wall / Monocoque / Plate / Tilt-Up
  - SEP (Structural Engineered Panel)
Short History on Solid Panel Houses in MN

- Pre-UMN: Rob Leslie develop 3-ply panel using 1/2” OSB
- House 2 (2003): 1-ply vertical panel using 1-1/8” OSB w/ battens at seams
- House 3 (2004): 1-ply vertical panel using 1-1/8” OSB w/ battens, shear wall & stair
MonoPath Solid Panel Houses (2014)

- Cedar 2.0
- Two story
- 3 bedroom
- 24’ x 32’
- Full basement
- 7 houses completed

- Builder: MonoPath
- Architects: CSI
- Developer: Spero
- Engineers: MMY
MonoPath Video Time Lapse
“Affordable Solid Panel “Perfect Wall” System”

- Funding from DOE Building America program in 2016
- Real world validation of cost and performance with focus on affordable housing
  - completed five SPS houses and two stud-frame comparison houses
- Preliminary structural testing at Home Innovation Research Labs
DOE High-Performance Home Challenge

Context: For decades, the “perfect wall” has been recognized as an optimal path to robust, high-performance, moisture managed, and energy-efficient walls.

- Critical control layers (water, air, vapor, thermal)
- Placed on the exterior of the structural system
- The same wall system can work in all climate zones

Problem: Adoption of the “perfect wall” by the home building industry has been incredibly slow due to:

- Perceived complexity
- Trades and labor challenges
- Higher initial construction costs

Solution: An innovative building system and delivery approach based on “perfect wall” principles that is quicker and less expensive to build.

- Labor savings gained from the building system and its delivery approach
- Provides savings to pay for high-performing control layers
- To deliver a more efficient, robust, and resilient home
Can the SPS system provide better performance at lower cost?

**Research Hypotheses:** This solid panel system …

- Will outperform conventional wood-frame construction at a lower cost,
- Will ensure better QA/QC and lower builder risk, and
- Can deliver cost-effective Zero Energy Ready Homes for affordable housing.

**Outcomes:** Validation of this innovative enclosure and delivery system

- Project to model, measure, and compare the SPS system to stud frame for:
  - performance (energy, moisture, air)
  - constructability and quality control
  - costs (materials, labor, etc.)
- Demonstrate market acceptance of the SPS system with a focus on affordable housing.
Solid Panel Structure (SPS) System
Foundation with Exterior Control Layers
Receiver Plate and First Floor Joisted Installed
First Floor Sheathing Installed

Framing Day 2
Crane Arrives
Exterior Vertical Panel Corners are Installed (plumb, level, & square)

Framing Day 2
First Floor Interior Horizontal Panels Installed

Framing Day 2
Second Floor Trusses and Sheathing Installed

Framing Day 2
Second Floor Interior Horizontal Panels Installed

Framing Day 2
Remainder of Exterior Vertical Panels are Installed

Framing Day 2
Roof Truss Installed (inside of exterior panel)
Roof Sheathing and Building Paper On (dried in)
Windows and Door Openings Cut

Framing Day 2
All Wall Penetrations are Pre-located and Cut

Framing Day 2
Fully-Adhered Membrane is Installed (as the water, air, and vapor control layer)
Windows Installed and Integrated w/ Membrane
Exterior Insulation Installed (2 layers w/ Furring)
Exterior Finishes are Completed
Interior Finishes & Electrical
Innovative SPS System Supports Outstanding Air/Energy/Moisture Performance

<table>
<thead>
<tr>
<th>House</th>
<th>Builder</th>
<th>Enclosure Type</th>
<th>Blower Door Test Results</th>
<th>HERS</th>
<th>Conditioned Shell Area - sf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACH@50</td>
<td>cfm@50</td>
<td>cfm@50Pa per sf shell</td>
</tr>
<tr>
<td>2313 James</td>
<td>TC Habitat for Humanity</td>
<td>Solid Panel System</td>
<td>0.26</td>
<td>88</td>
<td>0.019</td>
</tr>
<tr>
<td>3015 Thomas</td>
<td>TC Habitat for Humanity</td>
<td>Solid Panel System</td>
<td>0.41</td>
<td>140</td>
<td>0.031</td>
</tr>
<tr>
<td>2054 Morgan</td>
<td>TC Habitat for Humanity</td>
<td>Solid Panel System</td>
<td>0.44</td>
<td>146</td>
<td>0.032</td>
</tr>
<tr>
<td>952 Farrington</td>
<td>Urban Homemakers</td>
<td>Solid Panel System</td>
<td>1.01</td>
<td>404</td>
<td>0.089</td>
</tr>
<tr>
<td>1317 Thomas</td>
<td>Urban Homemakers</td>
<td>Solid Panel System</td>
<td>1.11</td>
<td>379</td>
<td>0.083</td>
</tr>
<tr>
<td>115 Magrova</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>1.15</td>
<td>358</td>
<td>0.081</td>
</tr>
<tr>
<td>433 Sherburne</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>1.25</td>
<td>428</td>
<td>0.094</td>
</tr>
<tr>
<td>582 York</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>1.30</td>
<td>445</td>
<td>0.098</td>
</tr>
<tr>
<td>587 Reaney</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>0.64</td>
<td>203</td>
<td>0.045</td>
</tr>
<tr>
<td>687 Edmund</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>1.03</td>
<td>318</td>
<td>0.070</td>
</tr>
<tr>
<td>706 Charles</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>1.60</td>
<td>250</td>
<td>0.056</td>
</tr>
<tr>
<td>706 Thomas</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>1.15</td>
<td>231</td>
<td>0.051</td>
</tr>
<tr>
<td>736 Desota</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>0.65</td>
<td>207</td>
<td>0.050</td>
</tr>
<tr>
<td>762 Lafrend</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>1.16</td>
<td>292</td>
<td>0.050</td>
</tr>
<tr>
<td>904 Geranium</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>1.00</td>
<td>317</td>
<td>0.070</td>
</tr>
<tr>
<td>687 Edmund</td>
<td>Spero Builders</td>
<td>Solid panel</td>
<td>1.03</td>
<td>318</td>
<td>0.070</td>
</tr>
</tbody>
</table>
“Accelerating the Adoption of the SPS System”

• Second round of funding from DOE Building America program in 2019
• Primary focus on structural testing at Home Innovation Research Labs that will:
  • support code acceptance
  • facilitate widespread adoption
• Develop simplified engineering calcs and prepare the way for ICC-ES approval
• Preliminary investigation of the SPS system for use in multifamily buildings
SPS Testing Plan

Developed by Jay Crandell, ARES, for the University of Minnesota and to be executed at the Home Innovation Research Labs.

• OSB Material Properties – 30 (small specimen) tests
• In-Plane Shear (Racking) Load Resistance – 8 full-scale tests
• Bending & Axial
  • 2-Ply Bending Stiffness & End Moment Fixity – 37 tests
  • 2-Ply Axial Point Load Buckling Interaction – 5 tests
  • SPS Header Beam Behavior – 24 tests (lack sufficient funds)
  • SPS Header End Reaction and Buckling Interaction – 24 tests (lack sufficient funds)
• Whole Building Tests (on hold; requires additional funding)
Wrap-Up

SPS is an innovative “building & delivery system” for the future of high-performance houses in the U.S.!

• Questions & Discussion

• Contact Information
  • Patrick Huelman
  • University of Minnesota
  • phuelman@umn.edu
  • 612-624-1286