
Im
Fir
Sy
Inf

1 | P a g e
 

 
 

mprovi
re Per
ystem
forma

 

e  

ing Fi
rform

ms and
ation f

ire Sa
mance
d Prov
for Ta

 COPYRIG

afety b
of En

viding
actica

GHT  2012 UL LL

 
 
 
 
 
 
 
 
 

by Un
ngine
g the 
al Dec

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LC 

nders
eered 

Fire S
cision

tandi
Floor
Servic

n Mak

ng th
r 
ce wi

king 

he 

th 



2 | P a g e
 

 

Re

UL 

Extern

Date: 

March 20

Title: : 
Syste

 

A

Step

Daniel

Jam

Robe

 
 
 
 
 
 
 
DISCLAIM
In no even

in this Rep

including,

use the in

specimens

determine

registered 

Recognitio

reference t

 
 

e  

elease Type 

Distribution

nal Distributi

012 

Improving 

ems and Pro

Author(s) 

phen Kerber 

l Madrzykow

mes Dalton 

ert Backstrom

MER 
nt shall UL be 

port and in no

 but not limit

nformation co

s actually invo

e the conforma

mark of UL t

on by UL and 

to UL on or in

D

 
  

ion Natio

Key

Fir

 

Fire Safety b

viding the F

wski 

m 

responsible to

o event shall U

ed to, consequ

ontained in th

olved in these

ance of subseq

o such materi

does not auth

n connection w

 COPYRIG

DOCUMEN

onal Institute

ywords: Stru

refighting, Ve

by Understa

Fire Service 

Depa

Corporat

N

Con

Corporat

o anyone for w

UL, its employe

uential damag

his Report.  I

e tests.  UL h

quently produ

al. The issuan

horize the use

with the produ

Internal

GHT  2012 UL LL

NT INFORM

e of Standard

 

uctural Collap

entilation, Fir

anding the F

with Inform

 

artment 

te Research

NIST 

ntractor 

te Research

 

whatever use o

ees, or its agen

e arising out o

Information c

as not establi

ced material, 

nce of this Rep

 of UL Listing

uct or system.

Custom

LC 

MATION 

ds and Techn

pse, Lightwei

re Behavior, 

Fire Perform

mation for T

R

or nonuse is m

nts incur any o

of or in conne

conveyed by 

shed a factory

nor has any p

port in no way

g, Classificatio

mer (Confide

nology 

ight Construc

Modern, Leg

mance of En

Tactical Dec

E

Stephen.Ke

madrzy

James.Dal

Robert.G.Bac

made of the inf

obligation or l

ection with th

this Report a

y Follow-Up 

provision been

y implies Listin

on or Recognit

Extntial)

ction, 

gacy 

ngineered Fl

cision Makin

Email 

erber@ul.com

y@nist.gov 

lton@ul.com

ckstrom@ul.c

formation cont

liability for da

he use or inabi

applies only t

Service Progr

n made to appl

ng, Classificat

tion Marks or

ternal (Public

oor 

ng  

m 

m 

com 

tained 

amages 

ility to 

to the 

ram to 

ly any 

tion or 

r other 

)



3 | P a g e  
 

 COPYRIGHT  2012 UL LLC 

EXECUTIVE SUMMARY 
 

This research project was a collaboration of several research organizations, product 
manufacturers and fire service representatives to examine hazards associated with residential 
flooring systems to improve firefighter safety.  Funding for this project was provided through the 
National Institute of Standards and Technology’s American Recovery and Reinvestment Act 
Grant Program. The main objective of this study was to improve firefighter safety by increasing 
the level of knowledge on the response of residential flooring systems to fire.  Several types (or 
series) of experiments were conducted and analyzed to expand the body of knowledge on the 
impact of fire on residential flooring systems.    The results of the study have been prepared to 
provide tactical considerations for the fire service to enable improved decision making on the fire 
scene. 

Experiments were conducted to examine several types of floor joists including, dimensional 
lumber, engineered I-joists, metal plate connected wood trusses, steel C-joists, castellated I-joists 
and hybrid trusses.  Experiments were performed at multiple scales to examine single floor 
system joists in a laboratory up through a full floor system in an acquired structure.  Applied 
load, ventilation, fuel load, span and protection methods were altered to provide important 
information about the impact of these variables to structural stability and firefighter safety. 
 
There are several tactical considerations that result from this research that firefighters can use 
immediately to improve their understanding, safety and decision making when sizing up a fire in 
a one or two family home.   
 

 Collapse times of all unprotected wood floor systems are within the operational time 
frame of the fire service regardless of response time.   

 Size-up should include the location of the basement fire as well as the amount of 
ventilation.  Collapse always originated above the fire and the more ventilation available 
the faster the time to floor collapse. 

 When possible the floor should be inspected from below prior to operating on top of it.  
Signs of collapse vary by floor system; Dimensional lumber should be inspected for joist 
rupture or complete burn through, Engineered I-joists should be inspected for web burn 
through and separation from subflooring, Parallel Chord Trusses should be inspected for 
connection failure, and Metal C-joists should be inspected for deformation and subfloor 
connection failure. 

 Sounding the floor for stability is not reliable and therefore should be combined with 
other tactics to increase safety. 

 Thermal imagers may help indicate there is a basement fire but can’t be used to assess 
structural integrity from above. 

 Attacking a basement fire from a stairway places firefighters in a high risk location due to 
being in the flow path of hot gases flowing up the stairs and working over the fire on a 
flooring system which has the potential to collapse due to fire exposure.   

 It has been thought that if a firefighter quickly descended the stairs cooler temperatures 
would be found at the bottom of the basement stairs.  The experiments in this study 
showed that temperatures at the bottom of the basement stairs where often worse than the 
temperatures at the top of the stairs. 
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 Coordinating ventilation is extremely important.  Ventilating the basement created a flow 
path up the stairs and out through the front door of the structure, almost doubling the 
speed of the hot gases and increasing temperatures of the gases to levels that could cause 
injury or death to a fully protected firefighter. 

 Floor sag is a poor indicator of floor collapse, as it may be very difficult to determine the 
amount of deflection while moving through a structure.   

 Gas temperatures in the room above the fire can be a poor indicator of both the fire 
conditions below and the structural integrity of the flooring system. 

 Charged hoselines should be available when opening up void spaces to expose wood 
floor systems.  
 

During all of these controlled experiments where the varaiables were systematically controlled 
there were no reliable and repeatable warning signs of collapse.  In the real world, the fire 
service will never response to  two fires that are exactly the same.     On the fire ground there are 
many  variables to consider and most of the parameters being considered are often unknown 
which makes decision making that much more difficult.  Information such as how long the fire 
has been burning, what type of floor system, was it built to code or altered at any point, is it 
protected with gypsum board, what is the loading on the floor and how long is the span are all 
unknown to the responding firefighters.  There are also no collapse indicators that guarantee the 
floor system is safe to operate on top of.  Sounding the floor, floor sag, gas temperatures on the 
floor above and thermal imager readings even when taken all together do not provide enough 
information to guarantee  that the floor will not collapse below you.  Flooring system 
components and floor covering materials are composed of materials that work to limit the flow 
of thermal energy through them.  As a result flooring materials could be on fire on the bootom 
side (basement side) while only exhibiting modest temperature increases on the top side of the 
floor.      
 
In addition,  rapid changes in fire dynamics can result from flow paths created by ventilating the 
basement and first floor of a structure.  These flow paths combined with  the fast spreading fire 
that results from the ignition of an unprotected wood floor system can place firefighters on the 
floor above the fire in a vulnerable position with little time to react.  It is ackowledged that there 
are times where firefighters may choose to operate on top of a basement fire to carry out their life 
safety mission however this decision must be made understanding the potential for catastrophic 
consequences.  There are also alternative tactics to consider in order to control the fire without 
first commiting crews above the fire such as suppression initiated from a basement window or 
doorway.  Coordination to control the basement fire prior to opening the first floor and 
committing crews on the first floor is essential. 
 
This report summarizes the  results from each of the experimental series  and provides discussion 
and conclusions of the results.  Each series of experiments was also documented and analyzed 
independently and these documents are attached as appendices of this report.  There is also an 
online training program that was developed for the fire service based on all of the material 
included in this research project.  It can be accessed for free at www.ul.com/fireservice (Click on 
“Basement Fires”) 
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1. Introduction 
 

This research project was a collaboration of several research organizations, product 
manufacturers and fire service representatives to examine hazards associated with residential 
flooring systems to improve firefighter safety.  Funding for this project was provided through the 
National Institute of Standards and Technology’s American Recovery and Reinvestment Act 
Grant Program. The main objective of this study was to improve firefighter safety by increasing 
the level of knowledge on the response of residential flooring systems to fire.  Several types (or 
series) of experiments were conducted and analyzed to expand the body of knowledge on the 
impact of fire on residential flooring systems.    The results of the study have been prepared to 
provide tactical considerations for the fire service to enable improved decision making on the fire 
scene. 

Six series of full-scale experiments were conducted to attempt to bridge the gap between single 
floor system members, sections of floor systems, entire floor systems and floor systems as part of 
a structure.  Variables examined included: fuel load, ventilation, mechanical load, floor support 
members, and floor system protection methods.  Fuel load/thermal exposure was varied as 
experiments were conducted under standard conditions in a furnace and with fuel loads 
representative of what would be found in a home.  Ventilation was examined by providing 
varying levels of oxygen to the fire and conducting simulated fire service sequenced ventilation.  
Mechanical load was varied to examine conservative loads that could be found in a home 
through full design load as specified in standard test methods.  Various joist members were 
examined to include dimensional lumber, engineered I-joists, metal plate connected wood 
trusses, steel C-joists, castellated I-joists and hybrid trusses.  Floor system protection methods 
were varied to examine products that are available on the market, technologies that could 
potentially be deployed and potential code compliant protection methods.  In addition to the 
experiments, modeling of some of the experiments was conducted to further examine the failure 
mechanisms of the floor systems. 

There are many potential contributing factors that influence outcomes during fire ground 
incidents outside the scope of this research project.  Each incident presents a unique set of 
circumstances addressing the interaction of the responding department to the fire event and 
circumstances specific to each arriving firefighter.  There is a growing concern in the fire service 
related to whether firefighters receive the degree of training and experience necessary to properly 
assess the risks on the fire ground.  The number of structure fires is decreasing; therefore 
firefighters need additional resources to gain the knowledge to understand fire progression, fire 
behavior and what happens to the structural integrity of a building under fire conditions. 
 
This project seeks to limit its investigation to the parameters that can be evaluated through 
experimentation to examine the cause and effect relationships regarding the topics of fire 
behavior, the impact of exposed combustible structural elements under fire conditions and the 
potential for structural collapse of the effected assemblies.  The work reported in this report is 
intended to provide tactical considerations determined by the research results to allow for better 
firefighter training and education to assist firefighters with risk analysis and decision making.  
Decision making based on the results of formalized fire research may in fact be one way to assist 
firefighters in making up for the loss of actual fire ground experience due to a continuing 
reduction in structure fires. 
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This report brings the results from each of the experimental series together and provides 
discussion and conclusions of the results.  Each series of experiments was also documented and 
analyzed independently and these documents are attached as appendices of this report. 

2. Objectives and Technical Plan 
 
The objectives of this research project include: 

 Improving firefighter safety by further educating them of the hazards associated with  
fires involving residential flooring systems. 

 Understanding the impact of span, fuel load, ventilation and fire location to system 
failure. 

 Working with the engineered products manufacturers to design products to meet fire 
performance and mechanical performance standards. 

 Examine different fire protection methods and develop data to assess their effectiveness. 
 Effectively model the impact of fire insult on engineered flooring systems. 
 Provide scientific data to substantiate code changes related to residential floor systems to 

result in improved building fire safety. 
 Provide valuable test database to the fire community for validation of computer-aided 

engineering models. 
The technical plan for this project includes Tasks 1 through 11 as shown in Figure 1.  Each of the 
six experimental series is described below with the Appendix location of the full report for each 
series.   

 
Figure 1.  Experimental Flow Chart 
 
Literature Review (Task 1): Prior to the start of experimentation a variety of related topics 
were researched: documented Line of Duty Injuries (LODI) and Line of Duty Deaths (LODD) 
involving unprotected combustible dimensional and engineered lumber assemblies, the fire 
endurance performance of unsheathed combustible wood assemblies; inclusive of informal fire 
service testing, floor furnace testing, full scale laboratory and site testing, and a review of related 
fire service publications.  The literature search was conducted in order to review and evaluate 
previous research methodologies utilized in the testing of unsheathed combustible dimensional 
and engineered lumber assemblies. This information was then referenced during the development 
of the various research variables for the current study.  
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3. Background  
 
Light-weight engineered floor systems provide architectural, economic and productivity benefits 
to the homeowner and the construction industry with assumed status quo in fire safety.  
However, under fire conditions, these light-weight engineered floor systems lead to greater risk 
of structural failure in a shorter time as a consequence of the reduced cross-sectional dimensions 
of the engineered products as compared to traditional dimensional lumber floor systems.  So, 
despite the superior structural performance of these new products to traditional lumber 
construction under ‘normal’ conditions, the trend reverses in a fire environment.  This is 
highlighted by the increasing number of firefighter fatalities due to collapse of these engineered 
systems under fire conditions. The National Institute for Occupational Safety and Health 
(NIOSH) issued a report, Preventing Injuries and Deaths of Fire Fighters Due to Truss System 
Failures,highlighting the risks of injury and death that can occur during fire-fighting operations 
involving engineered floor truss systems. 
 
Recent research by various organizations, including UL , NIST , NFPA  and National Research 
Council Canada , provided evidence of the greater risk in structural failure of engineered floor 
systems in fire events.  This research work was limited to validating the problem in a single 
scenario (single floor span length, single fire location and limited engineered lumber products). 
For example, previous research focused on exposing engineered wood assemblies to fire 
conditions at a 14 ft. span comparable to that achievable by dimensional lumber.  One of the 
significant advantages of the engineered floor systems is their ability to span longer distances in 
excess of 30 ft.  However, anecdotal evidence suggests that the longer spans potentially create 
greater hazards to failure when exposed to fire conditions.   
 
The construction industry is continually introducing new engineered products that provide better 
structural stability, allow for faster construction time and are more cost effective. Additionally, 
the market for green or environmentally sustainable building materials experienced a growth rate 
of 23% through 2006 and is expected to continue growing at a rate of 17% through 2011 
according to Green Building Materials in the U.S.   The increased market demand for 
environmentally sustainable products is driving engineered lumber products to further reduce 
material mass that could potentially result in even further concern for fire safety in building 
construction today.   
 
Engineered floor products provide financial and structural benefits to building construction, 
however, adequate fire performance needs to be addressed as well.  Adequate fire performance 
provides a necessary level of safety for building occupants and emergency responders 
responsible for mitigating fire incidents. Additional research is needed to assess other typical 
scenarios (including longer floor span lengths, various fire locations, other engineered floor 
system products) and fire protection technologies to protect engineered products to identify and 
validate potential solutions to address and mitigate the critical fire safety problem.    

4. Literature Review 
 
Several research projects that have been undertaken to evaluate the fire endurance performance 
issues of unprotected wood assemblies. Prior to the start of this experimentation a variety of 
related topics were researched: documented Line of Duty Injuries (LODI) and Line of Duty 
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Deaths (LODD) involving unprotected combustible dimensional and engineered lumber 
assemblies, the fire endurance performance of unprotected combustible wood assemblies; 
inclusive of informal fire service testing, floor furnace testing, full scale laboratory and site 
testing, and a review of related fire service publications.  The literature search was conducted in 
order to review and evaluate previous research methodologies utilized in the testing of 
unprotected combustible dimensional and engineered lumber assemblies. This information was 
then considered during the development of the various research parameters for the current study.  
 
There has been an overall decline in the numbers of U.S. firefighter deaths since 1977. (Fahy, 
2010) This fact is aligned with similar declines in the annual number of structure fires for the 
same period. However, while there has been an overall decline in both the number of fires and 
the number of fire fighter fatalities, statistically firefighters are more likely to experience a 
traumatic injury while operating inside of a structure.  
 
Dr. Rita Fahy cited this counterintuitive trend, “The one area that had shown marked increases 
over the period is the rate of deaths due to traumatic injury while operating inside a structure. In 
the late 1970s, traumatic deaths inside structure fires occurred at a rate of 1.8 deaths per 100,000 
structures fires and by the late 1990s had risen to approximately 3 deaths per 100,000 structure 
fires”. (Fahy, 2010) The major causes of these traumatic injuries inside structures were 
determined to be firefighters becoming lost inside, structural collapse, and rapid fire progression 
(including backdraft, flashover and explosion).  
 
Specific to this research project is the nature of firefighter injuries and deaths due to structural 
collapse, more specifically the structural collapse of dimensional lumber and/or engineered 
lumber floor and/or roof assemblies. General trends for incidents investigated by the National 
Institute of Occupational Safety and Health (NIOSH) Firefighter Fatality Investigation Program 
were analyzed for the purposes of determining the involved structural systems. The NIOSH 
Firefighter Fatality Investigation Program provides the most detailed public incident data for 
fatalities that have occurred since the inception of the program in 1997.  There have been 18 
collapses documented by the program, 11 dimensional lumber systems and 7 engineered floor 
systems, 4 roof assemblies and 14 floor assemblies. 
 
Fatalities that have been investigated by the NIOSH Fatality Investigation program alone does 
not provide the entire picture regarding the number of overall annual occurrences of residential 
structural collapse on the fire ground. Another web-based database created in 2005 by the 
International Association of Fire Chiefs (IAFC) with the sponsorship of a Department of 
Homeland Security, Federal Emergency Management Agency (DHS/FEMA) Assistance to 
Firefighters Grant (AFG) allows for the reporting of firefighter near-miss occurrences. Another 
website, www.firefighterclosecalls.com has been set up to describe near-miss incidents. This site 
identifies the injured firefighters and fire departments. 
 
The National Institute of Standards and Technology (NIST) conducted a review of data from 
both websites for the period from January 2005 to March 2011. There were 118 incidents 
reported that involved residential structural collapse. Seventy-six incidents resulted in 128 
firefighters being injured. (Madrzykowski, 2011) 
 
Fire resistive testing methodologies are very well established for combustible assemblies 
designed to achieve an hourly fire resistive rating with passive fire protection. Less understood is 
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the structural stability of unprotected combustible dimensional and engineered lumber 
assemblies exposed to fire conditions. When combustible wood assemblies are constructed 
without the protection of passive fire resistive technologies or active suppression systems, both 
dimensional and engineered lumber assemblies are vulnerable to collapse within the operational 
timeline of fire suppression operations.   
 
Subsequent to numerous LODI and LODDs fire service organizations have attempted to 
highlight performance failures noted during real life fire incidents through non-standard 
demonstrative testing methods. Due to a lack of adequate funding, testing experience and proper 
facilities these demonstrative tests document the failure times of the unprotected combustible 
assemblies without consistency with respect to the parametric criteria normally accounted for by 
standardized fire resistance testing methodologies, i.e. demonstrative testing was traditional 
conducted in open air environments which added a degree of ventilation variability and may not 
represent the ventilation limited environment of a basement or attic.  
 
Fire service demonstration examples include roof system demonstrations completed by the Los 
Angeles City Fire Department in 1981 (Mittendorf, 1982), floor system collapse demonstrations 
by the Illinois Fire Service Institute in 1986 (Straseske, 1988). Collapse times ranged from: 4 
minutes and 40 seconds for the engineered I-Joist floor system, 13 minutes for the 2x10 
dimensional lumber floor system, and 15 minutes and 45 seconds for the floor constructed with 
metal plate connected trusses.   
 
Numerous agencies have gone beyond demonstrations to examine unprotected floor assemblies.  
There are a limited number of documented Non-Standardized tests of unprotected combustible 
assemblies that conform to the ASTM E119, "Standard Methods of Fire Tests for Building 
Construction and Materials.” Non-standardized tests conform to most of the requirements of the 
ASTM E119 standard, the exception being loading.  
 
The National Engineered Lightweight Construction Fire Research Project (NELCFRP) 
sponsored by the National Fire Protection Research Foundation (FPRF) in October of 1992 
(Grundahl, 1992), was utilized as a resource for referenced literature published prior to 1992. 
One overall objective of the NELCFRP was to define the actual fire performance 
characteristics of engineered components through a review of existing documented research. 
The components examined solid-sawn (e.g., nominal 2 x 10) wood joists, metal plate 
connected (MPC) wood trusses, MPC metal-web wood trusses, pin-end connected steel-web 
wood trusses, engineered wooden I -joists, composite wood joists, steel bar joists, and light 
gauge steel C joists.  
 
The components examined in this study include: metal plate connected (MPC) wood trusses, 
MPC metal-web wood trusses, pin-end connected steel-web wood trusses, wooden I -joists, 
solid-sawn (e.g., 2 x 10) wood joists, composite wood joists, steel bar joists, and steel C joists. 
Table 1 provides a summary of the testing cited for Non-Standardized ASTM E-119 furnace 
testing conducted with modified loading conditions respective of the structural elements being 
examined for this research project.  
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Table 1.  Non-Standardized ASTM E-119 Furnace Testing (Grundahl, 1992) 
 

Test 
 

Structural Member 
 

Spacing 
Structural 

Failure 
(min:sec)

Loading (psf) - 
% Design Stress 

NBS 421346 (Son B. , 
Fire Endurance Tests of 
Unprotected Wood-Floor 
Construcitons for Single 
Family Residences: 
NBSIR 73-263, 1973) 

2 x 10; ½ in. ply. w/blk 16 in. o.c. 11:38 21.01 (40%) 

FPL (R.H. White, 1983) 2 x 10 16 in. o.c. 13:06 40.01 
FPL (R.H. White, 1983) 2 x 10; 23/32" ply. 16 in. o.c. 16:48 11.351 
FPL (R.H. White, 1983) 2 x 10; 23/32" ply. 16 in. o.c. 18:00 11.351 
FPL (R.H. White, 1983) 2 x 10; 23/32" ply. 16 in. o.c. 18:24 11.351 
FPL (R.H. White, 1983) 2 x 10; 23/32" ply. 16 in. o.c. 18:30 11.351 
NBSIR 73-141 (Son B. 
a., 1973) 

6 x 1¾ in. C-joist; 3/4" 
ply. w/carpet 

24 in. o.c. 3:45 51.41 

NBSIR 73-164 (Son B. , 
Fire Endurance Test of a 
Steel Sandwich Panel 
Floor Construciton, 
NBSIR 73-164, 1973) 

6 x 3 in. 14 ga C-joist; 
top and bottom 3/8” ply.

48 in. o.c. 9:00 40.01 

BMS 92 (Subcommittee 
on Fire Resistence 
Classifications of the 
Central Housing 
Committee on Research, 
1942) 

2 x 10; 3/4” ply. 16 in. o.c. N/A2   N/A3 

1 Assumed to be a limited load test.  Loading not 100% of design load. 
2 Ultimate fire resistance time period for exposed wood joists was 15 min.  
3  Loading developing 1000psi maximum fiber bending stress. 

 
In 2008, Underwriters Laboratories Inc. conducted floor furnace tests on nine assemblies as part 
of a fire research and education grant sponsored by the Fire Prevention and Safety Grants under 
the direction of the Department of Home Security/Federal Emergency Management 
Agency/Assistance to Firefighters Grants.   The nine fire tests complied with the requirements of 
ASTM E119 but the applied structural load was non-traditional.  Typically, a uniform load is 
applied on the floor or roof to fully stress the supporting structural members.  This load is 
generally higher than the minimum design load of 40 psf specified by the building code for 
residential construction.  For the tests conducted in this study the loading was modified to 
represent typical conditions during a residential fire.  A load of 40 psf was placed along two of 
the four edges of the floor – ceiling assemblies to represent loads around a perimeter of a room.  
On each sample, two 300 pound concentrated loads were placed near the center of the sample.  A 
mannequin, intended to simulate fire service personnel, represented each concentrated load.  
Table 2 details the tests and their collapse times. 

Kirk
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Table 2.  Summary of Test Samples (Underwriters Laboratories, Inc., 2008) 
Assembly Supports Ceiling Floor or Roof Collapse Time

(mm:ss) 
1 2 by 10s @ 16 

inch centers 
None 1 by 6 subfloor & 1 by 4 

finish floor 
18:45 

2 12 inch deep "I" 
joist @ 24 inch 
centers 

None 23/32 inch OSB subfloor, 
carpet padding & carpet 

06:03 

3 2 by 10s @ 16 
inch centers 

1/2 inch gypsum 
wallboard 

1 by 6 subfloor & 1 by 4 
finish floor 

44:45 

4 12 inch deep "I" 
joist @ 24 inch 
centers 

1/2 inch gypsum 
wallboard 

23/32 inch OSB subfloor, 
carpet padding & carpet 

26:45 

5 Parallel chord 
truss with steel 
gusset plate 
connections, 14 
inch deep @ 24 
inch centers 

1/2 inch gypsum 
wallboard 

23/32 inch OSB subfloor, 
carpet padding & carpet 

29:15 

6 Parallel chord 
truss with glued 
connections, 14 
inch deep @ 24 
inch centers 

1/2 inch gypsum 
wallboard 

23/32 inch OSB subfloor, 
carpet padding & carpet 

26:45 

7 2 by 6s @ 16 
inch centers with 
2/12 pitch 

1/2 inch gypsum 
wallboard 

1 by 6 roof deck covered 
with asphalt shingles 

40:00 

8 2 by 10s @ 16 
inch centers 

3/4 inch plaster 1 by 6 subfloor & 1 by 4 
finish floor 

79:45 

9 Roof truss with 
steel gusset plate 
connections @ 
24 inch centers 
with 2/12 pitch 

1/2 inch gypsum 
wallboard 

7/16 inch OSB covered 
with asphalt shingles 

23:15 

 
There have also been floor furnace experiments conducted to the ASTM E119 standard with 
loading of 100 percent of the design stress.  These tests were compiled as part of the National 
Engineered Lightweight Construction Fire Research Project (NELCFRP) sponsored by the 
National Fire Protection Research Foundation (FPRF) in October of 1992 (Grundahl, 1992).  The 
majority of the tests conducted were of unprotected dimensional lumber floor assemblies. A 
summary of these tests results is shown in Table 3. 
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Table 3.  Standardized ASTM E-119 Furnace Testing (Grundahl, 1992) 

 
Test 

 
Structural Member 

 
Spacing 

Structural 
Failure 

(min:sec) 

Loading (psf) -
% Design Stress

FM FC 209 (Factory 
Mutual Research, 1974) 

2 x 10; 23/32" ply. 
w/vnl 

24 in. o.c. 13:34 62.1 (100%) 

FM FC 212 (Factory 
Mutual Research , 1974) 

2 x 10; 23/32"ply. 
w/cpt  

24 in. o.c. 12:06 62.4 (100%) 

NBS 421346 (Son B. , 
Fire Endurance Tests of 
Unprotected Wood-Floor 
Construcitons for Single 
Family Residences: 
NBSIR 73-263, 1973) 

2 x 10; 1/2” & 5/8” ply. 16 in. o.c. 11:38 63.7 (100%) 

FPL (R.H. White, 1983) 2 x 10; 23/32" ply. 16 in. o.c. 6:12 79.2 (100%) 
FPL (R.H. White, 1983) 2 x 10; 23/32" ply. 16 in. o.c. 6:48 79.2 (100%) 
FPL (R.H. White, 1983) 2 x 10; 23/32" ply. 16 in. o.c. 7:30 79.2 (100%) 
FPL (R.H. White, 1983) 2 x 10; 23/32" ply. 16 in. o.c. 5:30 79.2 (100%) 
FPL (R.H. White, 1983) 2 x 10; 23/32" ply. 16 in. o.c. 6:18 79.2 (100%) 
FM FC 250 (Factory 
Mutual Research , 1977) 

12 in. MPCT; 3/4" ply. 24 in. o.c. 10:12 60.0 (100%) 

FM FC 208 (Factory 
Mutual Research , 1974) 

7¼ in. Steel C-joist; 
23/32”ply. w/vnl  

24 in. o.c. 7:30 69.8 (100%) 

FM FC 211 (Factory 
Mutual Research, 1974) 

7¼ in. Steel C-joist; 
23/32”ply. w/cpt 

24 in. o.c. 5:12 69.8 (100%) 

 
In December of 1980 the Center for Fire Research at the National Engineering Laboratory 
National Bureau of Standards authored, “Fire Performance of Selected Residential Floor 
Construction Under Room Burnout Conditions” (Fang, 1980). A series of seven large-scale room 
burnout fire tests were conducted with a set of selected residential floor to ceiling assemblies to 
provide data on the performance of the assemblies; these assemblies were then compared to 
future tests on the same constructions in a fire endurance furnace. Four wood frame and three 
light gauge steel-frame, load bearing assemblies, each measuring 10.7’x 10.7’ in size, were 
exposed from the underside to a fire environment produced from the burning of typical furniture 
and interior finished material in a room. A summary of these tests results is shown in Table 4. 
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Table 4.  Non-Standardized Test Results (Fang J. , 1980). 
Structural 
Member 

 
Spacing 

Plywood 
Subfloor 

Thickness 

Structural 
Failure 

(min:sec) 

 
Loading 

(psf) 
2 x 8 wood joist 16 in. o.c. 5/8  10:43 40.00 
7-1/4 steel joist 24 in. o.c. 5/8 3:47 72.00 
7-1/4 steel joist  32 in. o.c. 3/4 3:59 40.00 
2 x 8 wood joist  24 in. o.c. 23/32 12:00 40.00 
7-1/4 steel joist 24 in. o.c. 23/32 15:58* 67.0 

12 MPCT1  24 in. o.c. 23/32 18:34 67.0 

2 x 8 wood joist 24 in. o.c.  23/32 35:18* 40.0 
1 MPCT = Metal Plate Connected Truss 

* No joist collapse, times refer to excessive deflection rate.  
  

In 2008, Tyco International conducted a series of five comparative demonstrative tests.  This 
project was entitled, “The Performance of Composite Wood Joists Under Realistic Fire 
Conditions” (Tyco Fire Suppression & Building Products , 2008). This project created a 
simulated one room furnished basement fire. The test setup represented a seating area that had 
been located in a basement. The room measured 16 ft. x 16 ft. with a ceiling height of 8 ft. to 9 
ft. 2 in. depending upon the floor assembly tested. The ceiling was constructed of 11-7/8 in. deep 
composite wood I-joists spaced at 24 in. centers. The floor was loaded with a total live load of 
1280 lbs or about 5 lbs/ft2. The load consisted of two 300 pounds firefighter mannequins and 
concrete cinder blocks. Three sprinkler scenarios were evaluated as part of this program; 
including a single sidewall sprinkler, four pendent sprinklers and a single pendent sprinkler. The 
remaining two unsprinklered tests (i.e. “freeburn”) were performed using the same fire scenario 
and structural loading as the sprinklered tests with exposed composite wood joists. The report 
documents the ability for the three sprinkler designs tested to significantly control the fire event, 
limit the fire damage to areas local to the ignition source and inhibit the fires ability to involve 
and compromise the structural elements. Two unsprinklered tests were conducted. The first 
unsprinklered “freeburn” test documented flashover at 7:09 with structural collapse at 11:30. The 
second unsprinklered “freeburn” test documented flashover at 5:15 and structural collapse at 
8:34.  
 
In 2009, the National Research Council Institute for Research in Construction (NRC-IRC) 
conducted the experiments in the report titled, “Fire Performance of Houses. Phase I Study of 
Unprotected Floor Assemblies in Basement Fire Scenario” (Su, 2009). This project seeks to 
research fires in single-family houses to determine factors that affect the life safety of occupants. 
The safety of emergency responders in a fire originating in single-family houses was not within 
the scope of the NRC-IRC research project. The research established a typical sequence of 
events such as the smoke alarm activation, onset of untenable conditions, and structural failure of 
test assemblies, using specific fire test scenarios in a full-scale test facility. This test facility 
(referred to as the test house hereafter) simulated a typical two-story detached single-family 
house with a basement, which complied with the minimum requirements in the National 
Building Code of Canada (NBCC).  
 
The experimental facility represented a typical two-story single-family house with a basement. 
Each story of the test facility had a floor area of 1022 ft2 and a ceiling height of 8 ft. The 
basement was partitioned to create a fire room (17’- 4” by 17’-1” wide) representing a basement 
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living area. The structure provided for a doorway from basement and the first floor, removable 
exterior windows and operable interior doorways. Ventilation utilizing these devices were 
provided to replicate the timeline of fire induced ventilation conditions coupled with additional 
ventilation provided by occupant evacuation.  
 
The full-scale experiments addressed the life safety and egress of occupants from the perspective 
of tenability for occupants and structural integrity of structural elements as egress routes. A 
range of engineered floor systems, including wood I-joist, steel C-joist, metal plate and metal 
web wood truss assemblies as well as solid wood joist assemblies, were used in the full-scale fire 
experiments. A single layer of oriented strand board (OSB) was used for the subfloor of all 
assemblies without additional floor finishing materials on the test floor assemblies. Floor 
assemblies loaded with self-weight assembly dead loads and a uniform imposed live load of 20 
psf.  A summary of these tests results is shown in Table 5. 
 
Table 5.  Non-Standardized Test Results (Su, 2009) 

 Open Basement 
Doorway 

Closed Basement 
Doorway  

Assemblies Tested   
Test  

Structural 
Failure  

(min:sec) 

Test  Structural 
Failure 

(min:sec) 
2x10 Solid Wood Joist  UF-01 12:20 UF-02 20:00 
11-7/8 in. Wood I-Joist A UF-03 8:10 UF-09 12:58 
8 in. Steel C-Joist  UF-04 7:42 -  
12 in. Metal-plate wood truss  UF-05 7:49 -  
11-7/8 in. Wood I-Joist B UF-06. 6:22 -  

UF-06R 6:20 -  
UF-06RR 6:54 -  

12 in. Metal web wood truss UF-07 5:25 UF-08 7:54 
Note: 

1. In addition to the solid wood joists assembly, two engineered floor assemblies – one with the longest time 
and the other with the shortest time to reach failure in the open basement doorway scenario – were selected 
for testing with the closed basement doorway.  

 
In all experiments with the open basement doorway, the structural failure occurred after the 
inside of the test house had reached untenable (incapacitating) conditions. Results from replicate 
tests gave very repeatable durations to structural failure. Having a closed door to the basement 
limited the air available for combustion, given the relatively small size of the basement window 
opening, and prolonged the times for the test assemblies to reach structure failure (from 50-60% 
longer than with the open basement doorway).  
 
In 2011, the National Research Council Institute for Research in Construction (NRC-IRC) issued 
Summary Report NRCC-54007, “Fire Performance of Protected Ceiling / floor assemblies and 
impact on tenability.” (Su, 2009). This project seeks to research fires in single-family houses 
with protected ceiling and floor assemblies to determine factors that affect the life safety of 
occupants.  
 
After a previous study of unprotected floor/ceiling assemblies under basement fire scenarios, a 
further experimental program was undertaken to investigate the performance of protected 
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floor/ceiling assemblies and the tenability conditions in a test facility representing a two-story 
detached single-family house.  
 
A series of full-scale fire experiments were conducted using four types of floor systems (wood I-
joist, steel C-joist, metal web wood truss and solid wood joist assemblies), which were selected 
from the assemblies that had been tested in the previous study. The test floor assemblies were 
protected on the basement side (the fire exposure side) by a regular gypsum board ceiling, 
residential sprinklers or a suspended ceiling. Table 6 details the failure times for each 
experiment. 
 
Table 6.  Comparative Structural Performance Timelines for Experiment (in seconds) 

Test Number Test Assembly 
Structure 

Structural Failure Increased Time for 
Structure* 

Protection by Gypsum Board 
PF-01 Solid-sawn wood 

joist 
1320 580 

PF-02 Steel C-joist 1320 858 
PF-04 Wood I-joist 1247 757 

PF-06C Metal-web wood 
truss 

1424 1099 

Protection by Suspended Ceiling 
PF-05 Wood I-joist 638 148 

Protection by Residential Sprinklers 
PF-03 Wood I-joist not reached unlimited 

PF-03B Wood I-joist not reached unlimited 
PF-06 Metal-web wood 

truss 
not reached unlimited 

* The increase in the time taken to reach structural failure from the unprotected assembly from 
previous experiments as compared to a similar protected assembly.  
 
In 2011, Four real-scale experiments were conducted by the National Institute of Standards and 
Technology to measure the temperatures above and below a wood floor assembly exposed to fire 
conditions from below (Madrzykowski, 2011). The objectives of the experiments were: 1) to 
examine the heat transfer through a wood floor assembly and 2) to examine the ability of a 
thermal imager to determine the potential severity of the fire beneath the floor assembly and the 
ability to provide a sense of the structural integrity of the floor assembly in order to provide 
improved situational awareness.  
 
Each experiment was conducted in a wood framed two story structure. Each story consisted of a 
single compartment with interior dimensions of approximately 15.3 ft x 15.9 ft  x 8.0 ft high. The 
initial fuel in each experiment consisted of six wood pallets and hay in the center of the lower 
level compartment. Three of the experiments had engineered I-joist floor systems and one had a 
solid sawn limber floor system. 
 
Gas temperatures of the upper and lower compartments as well as the surface temperatures of the 
floor assembly were measured with thermocouples (TCs). Three commercially available thermal 
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imagers (TIs), each with a different type of sensor were used to view and record the thermal 
conditions of the top of the floor assembly from the open doorway in the upper compartment. 
Times to collapse of each floor were also noted. Given the insulating effects of the OSB and the 
floor coverings, the temperature increase or thermal signatures viewed by the TIs were small 
given the fact that the ceiling temperatures below the OSB were in excess of 1112 ºF. 
 
These experiments demonstrated that TIs alone cannot be relied upon to determine the structural 
integrity of a wood floor system. Therefore, it is critical for the fire service to review their 
practice of size-up and other fire ground tactics needed to enable the location of the fire prior to 
conducting fire operations inside a building. The United States Fire Administration (USFA) 
provided support for this project. 
 
4.1 Literature Review Summary 
 
A significant amount of work has been conducted, utilizing a variety of scales and methods, to 
evaluate the performance of unprotected combustible wood floor assemblies. An identified trend 
exists in the most recent research to conduct full scale testing using equivalent content fire 
loading to evaluate the anticipated fire behavior and structural performance encountered during 
actual fire events.  A more complete literature review can be found in Appendix C.  
 
This study will continue the full scale experiment trend and in addition will include a variety of 
ventilation conditions to evaluate the structural performance of unprotected residential floor 
assemblies under a multitude of possible developed fire conditions.   
 
The current project will also seek to address gaps in the previous literature with regard to 
standardized testing methodologies. Although there is a significant amount of data in this area, 
currently gaps exists in the area of unprotected assembly testing and newly developed 
technologies introduced into the residential market place.  
 
The testing parameters developed for this project will determine a comparative timeline of 
performance for the assemblies tested with respect to national fire department response and 
operational timelines as compared to both structural instability as well as structural collapse. 
Additional efforts will also be made to provide a consistent description and analysis of the failure 
mechanisms for the tested assemblies with the intent of providing the fire service with an 
understanding regarding the identification of a potentially dangerous damaged floor assembly.  

5. Experimental Series and Results 
 
A brief description and summary of the results for each series of experiments described in the 
technical plan is included in this section.  Due to the magnitude of each of these experimental 
series they were each documented such that they could stand-alone in their own report.  These 
reports that contain the details of experimental set-up, methodology, and instrumentation can be 
found in the Appendix.   

5.1. Fire Resistance Tests on Wood and Composite Wood Beams 
 
For this study, beams were tested at MSU’s structural fire test facility subjected both to mechanical 
loadings and thermal loadings following the ASTM E-119 fire exposure profile.  A series of 
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The design of these beam only tests gave consideration to the use of the test data for validation of 

computer models.  In such cases, the test must be designed to provide measurements throughout the 

specimen especially at key locations where high gradients in variables such as temperature or 

deflection are expected.  In addition, the boundary conditions must be constructed in a manner that 

allows for quantification within the model.  Now with the test data and detailed information 

available on these beam fire tests, a valuable database has now been created to help advance the use 

of computer modeling tools in understanding the fire performance of structures. 

 
 

The results coming out of this research are: 

 

 Wood joists made with dimensional lumber provide higher fire resistance as compared to 
engineered floor joists.  In this test program, traditional lumber joists failed at about 16 
minutes, while engineered floor joists failed at about 6 minutes under ASTM E-119 fire 
exposure. 

 The webs of engineered I-joists and castellated I-joists are the weakest parts in these 
joists, and failure occurred through the burn-out of the web. 

 The application of an intumescent coating to an engineered I-joist can enhance its fire 
resistance.   

 The connections in the steel/wood hybrid joists are the weak link during fire exposure 
and influence the resulting fire resistance. 

 Reinforcing the steel/wood connection of the hybrid joists with screws does not enhance 
fire resistance.   

 The presence of plywood sheathing on a joist enhances fire resistance and better 
simulates being part of a floor system. 

 The presence of axial restraint conditions does not significantly influence the fire 
resistance of wood joists. 

 The load level has an influence on the fire resistance of wood joists.  The higher the load 
level, the lower the fire resistance will be. 

5.2. Fire Service Collapse Hazard Floor Furnace Experiments 
 
Seven floor furnace experiments were conducted utilizing the standard ASTM E119 fire 
exposure curve on representative floor construction to develop comparable fire performance 
data.  All assemblies were intended to represent typical residential construction and included 
dimensional lumber, engineered wood "I" joists and trusses. The assemblies did not include a 
ceiling and were considered unprotected floor assemblies representative of a basement with no 
ceiling membrane.  Two of the assemblies were coated with a topical treatment to assess its 
ability to provide additional structural integrity.  These experiments are one task of a larger 
project that examined residential floor systems in different scales of experiments, examining 
several variables to provide information to the fire service to add to their knowledge of basement 
fire dynamics and collapse hazards. 
 

Kirk
Highlight
5.2. Fire Service Collapse Hazard Floor Furnace Experiments
Seven floor furnace experiments were conducted utilizing the standard ASTM E119 fire
exposure curve on representative floor construction to develop comparable fire performance
data. All assemblies were intended to represent typical residential construction and included
dimensional lumber, engineered wood "I" joists and trusses. The assemblies did not include a
ceiling and were considered unprotected floor assemblies representative of a basement with no
ceiling membrane. Two of the assemblies were coated with a topical treatment to assess its
ability to provide additional structural integrity. These experiments are one task of a larger
project that examined residential floor systems in different scales of experiments, examining
several variables to provide information to the fire service to add to their knowledge of basement
fire dynamics and collapse hazards.
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Table 10.  Laboratory Experiment Overview 
Experiment 

Number 
Floor Support Ventilation 

Description 
Collapse 

A Engineered Wood I-Joist (12 in.) Max Vent / Same as 
Exp. 3 

6:20 

B Engineered Wood I-Joist (12 in.) Max Vent / Torch 
ignition 

31:25 

C Parallel Chord MPCWT Max Vent / Void 
Ignition 

44:46 

D Parallel Chord MPCWT No Vent / 80 ft2 
exposed 

13:10 

 
Fuel load was varied to examine a representative basement fuel load down to just the floor 
system as the fuel load.  These experiments showed that the main component of the fuel load was 
the floor system itself.  Both variations of the fuel load resulted in collapse times within 100 
seconds of each other. 
 
Ventilation or the amount of air available to the fire plays a significant role in the fire dynamics 
of a house fire.  In an attempt to bound the problem the ventilation parameters were chosen at the 
extremes (Maximum and No Ventilation) and a simulated realistic scenario could be considered 
somewhere in the middle (Sequenced Ventilation).  The engineered I-joist and parallel chord 
truss floor system collapsed before 8 minutes therefore doing a sequenced scenario was not 
possible with these systems.  Limiting ventilation slowed the dimensional lumber floor collapse 
by 1:36, engineered I-joist floor by 0:49, metal C-joist floor by 1:53 and MPCWT floor by 2:40. 
 
Floor loading was varied to examine a representative loading found in a home to a lighter load 
consisting of perimeter loading simulating furniture and two 300 lb firefighters in the center of 
the floor.  Ultimately the load on the floor system did not play a significant role in determining 
the time to collapse but rather the degradation of the floor system as it was consumed and 
weakened by the fire.  
 
Several tactical considerations for the fire service were developed from the experimental results 
including topics of operational timeframe, size-up, basement fire attack, collpase predictors or 
lack there of, ventilation, inspection and overhaul.   
 

5.4. Basement Fire Growth Experiments in Residential Structures 
 
Many of the structural collapse experiments that have been conducted to aid the fire service have 
been carried out under laboratory conditions, such as a furnace test or a test prop assembled in 
the lab.  These previous experiments have provided data on a wide variety floor assemblies and 
the knowledge base has been greatly expanded during the past few years.  However, these 
experiments have not examined the impact on the growth of a fire being started in a closed 
residential structure, below ground level, with limited ventilation.  These factors in addition to 
the volume and the type of construction of the structure may have significant impact on the fire 
growth and the resulting hazard to fire fighters at their time of arrival to the fire ground.   
The objectives of these experiments were to: 
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1. Examine the development of a fire in the basement of an acquired structure with the 
windows and doors to the structure closed. 

2. Examine the development of a fire in the basement of an acquired structure with the 
basement windows and the doors to the structure on the 1st floor open.   

The National Institute of Standards and Technology (NIST) and Underwriters Laboratories (UL) 
collaborated to conduct four experiments in two acquired structures in Bensenville, IL.  A two 
story colonial with an unprotected wood I-beam floor assembly and a single story bungalow with 
an unprotected solid wood floor joist assembly.  In each experiment a replicable fuel package 
was ignited in the basement.  Two experiments were conducted in each structure. Key 
differences between the two experiments in each structure were the ventilation and the initial fuel 
package ignited.  In the second experiment in each house the fire was allowed to develop until 
the structure collapsed.   
 
A wide variety of measurements were taken both in the laboratory and in the acquired structures 
to support this study.  This provides an overview of the types of measurements made and the 
type of instruments used to make them.  Full details of the report including specifics on the 
number of instruments, the estimated measurement uncertainty, the instrument location and the 
results are presented in Appendix D.      
 
To assess the fuel load, heat release rate (HRR) and weight measurements of the furnishings 
similar to the ones used in these experiments were conducted.  The HRR measurements were 
taken using a 6.0 m × 6.0 m (20 m x 20 m) square oxygen consumption calorimeter at the NIST 
Large Fire Laboratory (LFL).  The weights of the fuels were measured using a mass load cell.   
The dimensions of the houses and the fuel loads and the locations of the fuels were measured 
with a steel measuring tape.  Temperature was measured with type K, bare bead thermocouples.  
The heat flux gauges used in the basements were Schmidt-Boelter type, water cooled gauges 
with embedded type K thermocouples. Gas velocities were measured at basement windows and 
the basement doors using bidirectional probes and type K, 1.6 mm (0063 in) diameter, inconel 
shielded thermocouples.  Oxygen, carbon dioxide, and carbon monoxide were measured in the 
basement.  Oxygen was measured using paramagnetic analyzers. Carbon monoxide and carbon 
dioxide were measured using non-dispersive infrared (NDIR) analyzers. In addition, three types 
of commercially available, battery operated smoke alarms were installed throughout the 
structures to see when occupants might be made aware of the basement fire based on the 
activation times.  
 
NIST and UL conducted a series of experiments to characterize the fuel load selected for the 
basement experiments. Two rectangular, end tables, one oval, coffee table, two upholstered 
chairs, a couch, and a lamp were positioned in a typical seating arrangement in the basement of 
the each house (Figure 15).  In addition to the furniture, sets of cardboard boxes filled with 
polystyrene foam meat trays (Figure 16) were arranged on wooden pallets and distributed to 
multiple locations in the basement.  The fuel packages were similar in both houses.   
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The sofa became fully involved in fire and the fire spread to other pieces of furniture.  However 
this initial growth of the fires was not sufficient to fail any of the basement windows and the heat 
release rate of the fires decreased which resulted in a decrease in the hot gas temperatures in the 
basements.  A sequence of venting the windows began at approximately 10 minutes after 
ignition, the fire continued to burn out the furniture fuel package without extending to the 
structure.  There was no visible thermal damage to any of the exposed wood floor assembly 
components in either structure.    
 
In Experiment 2 and Experiment 4, all of the vents that were opened in Experiment 1 and 
Experiment 3 were left opened.   In addition, a door on the first floor was left open to provide a 
flow path to the basement.   The initial fuel load ignited was changed to a stack of the cardboard 
boxes, filled with polystyrene trays on wood pallets in these experiments.   With the increased 
ventilation and a fast burning, source fire, the fire spread to the exposed wood floor assemblies in 
both structures and the structures burned until complete collapse.    
 
The temperature at 30 cm (12 in.) below the ceiling near the initial fuel package is presented in 
Figure 21 for each experiment.  Within the first 100 s (1 min. 40 s), the temperatures from 
Experiment 2 and Experiment 4 (vents open) reached and sustained temperatures in excess of 
500 °C (932 °F)  while the temperatures from Experiment 1 and Experiment 3 (vents closed) 
with exception of a brief peak, stayed below 300 °C (572 °F).    
 

 
Figure 21.  Temperature at 30 cm from ceiling at the side B location for each experiment. 
 
The deflection of the first level floor in both houses was assessed by wires weighted with 
markers on the exteriors of the houses that were connected to the firefighter mannequins in the 
living rooms and videoed throughout the experiments to monitor their position.  The upward 
movement of the wood indicated the downward deflection of the floor.  For the colonial 
structure, Experiment 2 (vents open) the floor began to deflect at approximately 6 minutes after 
ignition. The last clear visual of the markers before the floor collapsed occurred at approximately 
22 minutes after ignition, at that point the floor deflection is in excess of 150 mm (6 in.).  Based 
on changes to the fire conditions throughout the structure, a portion of the first floor collapsed at 
approximately 23 minutes after ignition.     
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In the bungalow experiment 4 (vents open), smoke from basement fire obscured the deflection 
markers throughout the experiment.  The last time that the markers could be seen was 
approximately 12 minutes after ignition and no floor deflection was discernible.  The floor 
collapse began at approximately 18 minutes and 45 seconds after ignition.   It is important to 
note that a direct comparison of the collapse times based on type of construction, between the 
colonial and bungalow, cannot be made due to differences in the ventilation and volume of the 
space. 
 
Regarding the potential for firefighter to make an interior attack on the basement fire, the 
temperatures were measured at the top of the stairs leading down to the basement for 
experiments 2 and 4 (vents open) are given below.   In both cases, untenable conditions for a 
fully protected fire fighter were generated in the basement stairway.    
 
 

 
Figure 22.  Temperature profile of the thermocouples attached to the bidirectional probes at the top of the 

basement stairs in the colonial experiment 2. 
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Figure 23.  Temperature profile of the thermocouples attached to the bidirectional probes at the top of the 

basement stairs in the bungalow experiment 4. 
 
In summary, several observations based on these acquired structure experiments can be made:  
 

 Collapse times of both the structures with unprotected wood floor systems were within 
the operational time frame of the fire service.   

 Size-up should include the location of the basement fire as well as the amount of 
ventilation.   

 Without any exterior openings the fires consumed the available oxygen in the basement 
and did not grow beyond the incipient stage.  In the unvented cases, the fire did not fail 
(auto vent) any of the basement windows and did not lead to the ignition of any of the 
exposed wood floor system components. 

 By opening the basement windows and igniting a faster developing fuel package, the 
additional oxygen allowed the fire to grow and led to the ignition of the exposed wood 
floor systems which then led to structural collapse.  

  Attacking a basement fire from a stairway places firefighters in a high risk location due 
to being in the flow path of hot gases flowing up the stairs and working over the fire on a 
flooring system which has the potential to collapse due to fire exposure.   

 Floor temperatures above the fire can be a poor indicator of both the fire conditions 
below and the structural integrity of the flooring system. 

 

5.5. Modeling the Thermal and Structural Behavior of Wood Beams in a Fire Environment 
 
This research extends the predictive capabilities of high-performance computing tools, 
specifically finite element (FE) analysis tools, for the fire performance of building components.  
This research specifically focused on the fire performance of two types of wood products 
common in residential constructions:  dimensional lumber and engineered wood.  For both wood 
types, fire tests were conducted on individual beams (Kodur & et al., 2011) and flooring systems 
(Backstrom & et al., 2010) according to standard fire tests in a furnace.  The purpose of this 
building block approach was to assist with FE model trouble shooting and validation. 
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For the dimensional lumber samples, the cross sections of the beam were rectangular while for 
the engineered wood samples, the cross-section was an I-profile.  The reason for selecting wood 
is its prevalence in residential and commercial constructions as innovative wood engineered 
products enter the marketplace.  In wood structures, oriented strand board (OSB) and plywood 
are the most prevalent materials for composite panels.  In the last few years, UL fire research 
(Backstrom & et al., 2010) has shown that flooring systems supported by engineered products, 
though perform admirably in normal conditions, show a degraded fire performance vis-à-vis 
solid lumber beam supports when unprotected, typical of unfinished basements. 
 
The research demonstrated the capabilities of current state of art in finite element analysis using 
a ‘smart simplifications in simulation’ framework.  The results in this study show that advanced 
analysis of wood-based structural components in a fire environment is possible where: 

 
 Effective material properties can be used to implicitly incorporate a variety of physical 

phenomena. 

 Thermal properties from the Eurocodes with some alterations, mainly in the charred 
sections, provide a very good starting point when material properties from testing of 
wood specimen of interest are not available. 

 FE deflections can be very sensitive to the values of the coefficient of thermal 
expansions. 

 The overall analysis can be conducted using a one-way coupling between the thermal 
analysis and the structural analysis. 

 For the structural analysis, a static analysis can provide sufficient accuracy up to the point 
of instability. 

 A collaborative effort between analyst and test engineers to produce ‘designed’ 
experiments can greatly help the building block approach to model troubleshooting and 
confidence. 

 A relatively simple model for heat source, furnace, including radiation and convection 
heat transfer can still lead to meaningful results. 

 An analysis of the model charring rate and charring section can be based upon review of 
isotherms. 
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For solids, the thermal conduction model is only 1-D and surfaces of the same obstacle do not 
communicate thermally.  As such, FDS cannot account for burning through of the wood which is 
actually happening in this case.  Since the joists were comprised of engineered wood I-beams, it 
is known that for these beams, the thin webs burnout first, creating through holes for flames and 
air, eventually causing the lower chord to fall down.  With an ability to model this aspect the air 
flow between the joists, the predictions will be less accurate especially in the region over the heat 
source as time progresses in the simulation.   

6. Discussion 
 
The multiple series of experiments allow for the comparison of important variables.  The impact 
of scale can be examined by comparing the component level experiments to the larger assembly 
level experiments.  Floor system types, loading, ventilation, fuel load, span distance and 
protection methods will be discussed as they pertain to the different types of experiments.   

6.1. Scale 
 
Four different types of experiments were conducted with real-scale, commercially available 
structural components.  Component experiments were conducted in a structural furnace, standard 
assembly experiments were conducted on a standard floor furnace, full-spanfield and laboratory 
experiments were conducted with a simulated basement structure and full-scale realistic house 
experiments were conducted on homes scheduled for demolition. 
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10 seconds for the full house experiment.  With the exception of the two experiments at the 
extremes of the range the collapse times of the six moderately loaded (< 65% of the design load), 
11 7/8 in. deep I-joists failed at an average of 6:18 with a maximum of 6:49 and a minimum of 
6:00 (Table 12).  The house experiment which had 9 ½ in. deep joists and it collapsed at 
approximately 23:10 after ignition.  The comparison of these failure times is presented to note 
the differences based on fire exposure, ventilation, span and loading.  It is interesting that for six 
of the experiments which were different in design, fire exposure, ventilation, span and loading 
the time to failure was very similar. 
 
Table 12.  Engineered I-joist Experiments at Different Scales 

Experiment Span Spacing 
(i.o.c.) 

Depth 
(in) 

Load Details Failure 
Time 

MSU Beam 
Furnace 

12 ft. NA 11 7/8 50% Axially 
Unrestrained 

6:15 

MSU Beam 
Furnace 

12 ft. NA 11 7/8 50% Axially 
Restrained 

6:25 

UL Floor 
Furnace 

13 ft. 4 in. 24 11 7/8 100%  2:20 

UL Floor 
Furnace 

13 ft. 4 in. 24 11 7/8 Modified  6:00 

Full-Span Field 
Experiment 

20 ft. 16 11 7/8 65% Maximum 
Ventilation 

6:00 

Full-Span Field 
Experiment 

20 ft. 16 11 7/8 65% Minimum 
Ventilation 

6:49 

Full-Span 
Laboratory 
Experiment 

20 ft. 16 11 7/8 65% Maximum 
Ventilation 

6:20 

House 
Experiment 

12 ft. 7 in. 16 9 ½ Modified Limited 
Ventilation 

(4 windows on 
one side of the 
basement and 
one open stair)  

 
23:10 

 
Engineered I-joist were also protected with an intumescent coating and tested at two different 
scales, in the component level furnace and in the assembly level floor furnace.  The span was 1 
ft. 4 in. longer in the assembly experiment and the load was applied differently and there was an 
approximately 6 minute earlier failure in the assembly scale experiment (Table 13). 
 
Table 13.  Engineered I-joist with Intumescent Coating Experiments at Different Scales 

Experiment Span Spacing 
(i.o.c.) 

Depth 
(in) 

Load Details Failure 
Time 

MSU Beam 
Furnace 

12 ft. NA 11 7/8 50% Axially 
Restrained 

24:05 

UL Floor 
Furnace 

13 ft. 4 in. 24 11 7/8 Modified  17:50 
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Table 14 compares all of the different type of dimensional lumber experiments. Just examining 
the failure times shows that failure times ranged from 7:04 to 20:40.  The component furnace 
experiments that were loaded to 50 % had an average failure time of 18:40 (minimum of 16:40 
and maximum of 20:40) which is very close to the assembly  furnace experiment conducted as 
part of the previous UL research program which failed at 18:35.  The full span field experiment 
floor assemblies with nominal 2 by 12’s with 65% loading failed at 11:09 and 12:45 depending 
on ventilation conditions and the component scale nomimal 2 by 10’s with 70 % loading 
experiments failed at 15:35 and 13:05 dependent upon restraint conditions.  While the 
components were larger in the full-span fireld experiments, the span was also larger but the 
average failure times were within 17%.  The two experiments with older nominal 2 by 8’s, in the 
floor furnace experiment (1 ⅝ in. by 7 ½ in. actual) and the actual house experiment (1 ¾ in. by 
7 ½ in. actual) both failed within 15 seconds of each other at 18:05 and 18:20 respectively. 
 
Table 14.  Dimensional Lumber Experiments at Different Scales 

Experiment Span Spacing 
(i.o.c.) 

Depth 
(in) 

Load Details Failure 
Time 

MSU Beam 
Furnace 

12 ft. NA 9 1/4 70% Axially 
Unrestrained 

15:35 

MSU Beam 
Furnace 

12 ft. NA 9 1/4 70% Axially 
Restrained 

13:05 

MSU Beam 
Furnace 

12 ft. NA 9 1/4 50% Axially 
Unrestrained 

16:40 

MSU Beam 
Furnace 

12 ft. NA 9 1/4 50% Axially 
Restrained 

20:40 

MSU Beam 
Furnace 

12 ft. NA 9 1/4 70% Axially 
Restrained 

16:50 

UL Floor 
Furnace 

13 ft. 4 in. 16 9 1/4 100%  7:04 

UL Floor 
Furnace 

13 ft. 4 in. 16 9 1/4 Modified Previous UL 
Experiment  

(Backstrom & et 
al., 2010) 

18:35 

UL Floor 
Furnace 

13 ft. 4 in. 16 7 1/2 100% Reclaimed 
Lumber from 
1940’s House 

18:05 

Full-Span Field 
Experiment 

16 ft. 16 11 1/2 65% Maximum 
Ventilation 

11:09 

Full-Span Field 
Experiment 

16 ft. 16 11 1/2 65% Sequenced 
Ventilation 

12:45 

House 
Experiment 

12 ft. 5 in. 16 7 1/2 Modified Maximum 
Ventilation 

(2 windows (4 total) 
on each side of the 
allowing for cross 

ventilation, one stair 
leading up to the 
kitchen and one 

door leading directly 
outside.)     

18:45 
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Two additional joist types can be compared at the component beam furnace test and the standard 
floor assembly test, the castellated Engineered I-joists (Table 15) and the Engineered Wood and 
Metal Hybrid Trusses (Table 16).  The castellated I-joists had an average failure time of 7:00 
(minimum of 6:50 and maximum of 7:10) in the component scale experiments and a failure time 
of 8:10 in the standard floor assembly scale experiment, yielding a difference of approximately 
15%. The engineered wood and metal hybrid trusses had a failure time of 6:00 for both 
component scale experiments and a failure time of 5:30 in the standard floor assembly scale 
experiment, yielding a difference of 10%. 
 
Table 15.  Castellated I-Joist (with openings) Experiments at Different Scales 

Experiment Span Spacing 
(i.o.c.) 

Depth 
(in) 

Load Details Failure 
Time 

MSU Beam 
Furnace 

12 ft. NA 16 50% Axially 
Unrestrained 

7:10 

MSU Beam 
Furnace 

12 ft. NA 16 50% Axially 
Restrained 

6:50 

UL Floor 
Furnace 

13 ft. 4 in. 24 16 Modified  8:10 

 
Table 16.  Engineered Wood and Metal Hybrid Trusses Experiments at Different Scales 

Experiment Span Spacing 
(i.o.c.) 

Depth 
(in) 

Load Details Failure 
Time 

MSU Beam 
Furnace 

12 ft. NA 14 50% Axially 
Unrestrained 

6:00 

MSU Beam 
Furnace 

12 ft. NA 14 50% Axially 
Restrained 

6:00 

UL Floor 
Furnace 

13 ft. 4 in. 24 14 Modified  5:30 

 

6.2. Floor Joist Types 
 
During the five series of experiments 6 types of floor joists were tested.   Ten dimensional 
lumber, thirteen engineered I-joist, three castellated I-joist, five hybrid trusses, two steel C-joist 
and four metal plate connected wood truss experiments were conducted.  Removing the protected 
assemblies and ignoring all other variables the maximum, minimum, average  failure times and 
the standard deviations of each joist type is shown in Table 17.  Every experiment with the 
exception of the full-scale actual house experiment with an engineered I-joist floor system was 
within 2 standard deviations of the average.  Comparing all of the engineered joist types yields 
an average failure time that is approximately one half that of the dimensional lumber joists. 
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failed at 10:08 after ignition.  Failure of the maximum ventilated experiment occurred 39% faster 
than the no ventilation experiment. 
 
The fourth ventilation comparison was the MPCWT floor system.  One experiment was 
conducted with maximum ventilation or all of the openings in the open position and a second 
experiment was conducted with no ventilation or all of the doors and windows closed.  The 
maximum ventilation experiment experienced failure at 3:28 and the no ventilation experiment 
failed at 6:08 after ignition.  Failure of the maximum ventilated experiment occurred 43% faster 
than the no ventilation experiment. 
 
As expected the more air available to burn the faster the time to failure.  However in most of the 
experiments with the engineered floor systems there was enough air contained within the 
structure or being entrained through leaks into the structure itself to allow for enough burning to 
lead to failure.  Given this test arrangement, the ventilation scenarios were meant to show the 
extremes therefore any other type or amount of natural ventilation under similar experimental 
conditions could be expected to fail between the bounding failure times.  This was not a large 
window for most of the floor system types. 

6.5. Fuel Load 
 
Fuel load is often a topic that gets focused on in collapse experiments so the different 
experiments were designed to try to bound the impact of the fuel load and to examine the impact 
of the floor system itself instead of just the moveable fuel loading.  A common misconception 
when analyzing the collapse of wood floor systems is neglecting the impact the floor system 
itself plays in the fuel load needed to grow the fire.  Usually the focus is on the fuel load in the 
room and not necessarily on the amount and geometry of wood available to burn.   
 
Two sets of experiments can be compared from the field and laboratory experimental series 
based on different fuel loads.  The first is experiments 4 and 5, where the floor system 
(Engineered I Joist) was the same, the loading was the same, but the fuel load was different.  
Experiment 4 had the full fuel load consisting of wood pallets with cardboard boxes of expanded 
polystyrene trays on top of them.  Experiment 5 had just the wood pallets and no boxes.  Figure 
32 shows the 3 temperature measurement locations in the basement at 6 ft above the floor or 3 ft. 
below the decking.  It also shows the time of collapse for each experiment which was within 100 
s of each other.  If you compare the time from ignition of the floor system above the fuel load to 
collapse time both experiments are within 36 seconds of each other.  Table 18 shows the peak 
temperatures and temperatures 10 seconds before collapse of each experiment and they are all 
with 10% of each other demonstrating that the temperatures in the basement are independent of 
the change in fuel load.   Experiment 4 with the larger fuel load did not burn hotter than 
Experiment 5, the most significant difference was the time to ignition of the flooring systems.  
The ventilation conditions for both Experiment 4 and 5 were the same. 
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Figure 33.
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Table 20.  Delta t calculations for fuel load comparison experiments 
Experiment 

Number 
Floor Support Ventilation 

Description 
Fire Spread 

to Floor 
Collapse Δt 

(min:sec) 
4 Engineered Wood I-

Joist (12 in.) 
No Vent 2:43 6:49 4:06 

5 Engineered Wood I-
Joist (12 in.) 

No Vent/No 
boxes 

3:45 8:27 4:42 

      

A Engineered Wood I-
Joist (12 in.) 

Max Vent / 
Same as Exp. 3 

2:20 6:20 4:00 

B Engineered Wood I-
Joist (12 in.) 

Max Vent / 
Torch ignition 

25:55 31:25 5:30 

 
Comparisons can be made to the temperatures that were generated to expose the floor systems in 
all of the series of experiments independent of the source of the fire.  Dimensional lumber was 
chosen for this comparison because the experiments lasted longer than the other floor systems 
and these joists were tested in each of the types of experimentation.  Comparing the temperatures 
in the dimensional lumber experiments for each series of experiments to the standard time 
temperature curve yields an assessment of fuel load.  The standard time temperature curve 
provides a standard fire exposure for comparing relative fire performance of building 
construction assemblies. Figure 34 shows the average furnace temperatures for the component 
and floor furnace experiments, the temperatures in the basement, at the base of the stairs, 1 ft. 
below the floor assembly in the field experiment and the temperatures in the basement of the 
bungalow house 1 ft. below the ceiling versus the standard time temperature curve.   
 
The component level furnace experiment was able to remain close to the standard curve for the 
duration of the experiment by balancing the fuel burned inside the furnace with the burning of 
the floor joist.  The assembly level floor furnace experiment remained below the curve for the 
first 100 seconds and then exceeded the curve as the floor assembly ignited and contributed to 
the burning in the furnace.  The maximum ventilation field experiment also remained below the 
standard curve for the first 120 seconds and then exceeded it until approximately 360 seconds 
before remaining at or below it until collapse.  The house fire experiment also began below the 
curve for the first 100 seconds and then exceeded it until approximately 380 seconds before 
remaining near or below it until collapse.  It is important to note that typically the standard time 
temperature curve is followed for hourly ratings, 30 minutes to 4 or more hours, while these 
experiments only lasted approximately 7 to 20 minutes after ignition before they failed. 
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Figure 35.
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Table 22.  Engineer I-Joist Floor Assemblies with Protection Methods under the same modified loading 
conditions 

Test Assembly  Supports Time to failure
1 Engineered I-Joists – Unprotected  (12 in.)  6:00 

3 Engineered I-Joists w/ Fire Retardant Coating (12 in.) 8:40 

4 Engineered I-Joists w/ Intumescent Coating (12 in.) 17:50 

5 Engineered I-Joists w/ gypsum wallboard (1/2 in.)  26:43 

 
Table 23.  Dimensional Lumber Floor Assemblies with Protection Methods under the same modified loading 
conditions 

Test Assembly Supports Time to failure
1 Dimensional Lumber (2 x 10)  - Unprotected  18:35 

2 Dimensional Lumber (2 x 10) – Gypsum Wallboard (1/2 in)  44:40 

3 Dimensional Lumber (2 x 10) – Plaster and Lath  79:00 

4 Dimensional Lumber (2 x 10) w/ 100% Loading 7:04 

5 Old Dimensional Lumber (2 x 8) w/ 100% Loading 18:05 

 

7. Tactical Considerations 
 
Bringing together the results of these experiments or all experiments for the fire service, to 
understand how they may impact tactics on the fire ground is crucial to the safety of the fire 
service.  All of the changes to the fire environment that have occurred over the past few decades 
make it essential for the fire service to reevaluate their tactics on a regular basis.   
 
Note to Fire Service Readers:  Before you read this section it is very important to understand this 
information and these considerations as they pertain to the types of structures used in these 
experiments.  Another important factor to keep in your mind is the capabilities and resources 
available to your particular department.  If your department has 3 person staffing on an engine 
and your mutual aid is 20 minutes away you may look at these considerations differently than if 
your department has 6 person staffing and you expect 4 engines and 2 trucks on the scene in 10 
minutes.  There are no two fires that are the same and not every fire has one answer that is 
correct every time, most of the time it depends on a number of variables.  Even in these 
controlled experiments with the same structure and fuel load there are differences in how the fire 
develops.  These tactical considerations are not meant to be rules but to be concepts to think 
about, and if they pertain to you by all means adapt them to your operations. 
 

7.1. Operational Timeframe 
 
Every fire department has a wide range of response times within their response area depending 
on factors such as distance from the fire station, type of fire department and time of day just to 
name a few.  In an analysis done by the United States Fire Administration (USFA) in 2006 they 
conclude, “In most of the analyses done here, response times were less than 5 minutes nearly 
50% of the time and less than 8 minutes about 75% of the time. Nationally, average response 
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times were generally less than 8 minutes.  The overall 90th percentile, a level often cited in the 
industry, was less than 11 minutes.” (USFA, 2006)   
 
These response times don’t take into consideration the time between ignition and notification to 
the fire department to begin their response.  It is important to note that the fire department rarely 
knows when the fire started.  Conservatively for this discussion let’s assume that it takes 4 
minutes from the time of ignition, for the fire to be discovered, for the fire department to be 
notified and for the fire department to begin their response.  Figure 36 shows the response times 
from the USFA study and how they compare with the minimum, maximum and average collapse 
times from all of the experiments with unprotected floor systems.  It is clear that the fire 
department has to seriously consider collapse in their initial operations because regardless of the 
flooring type, ventilation configurations, fuel load or mechanical load collapse could occur 
before their arrival or within their operational timeframe.   
 
All of these experiments were started with a flaming ignition.  The average collapse times of all 
of the engineered floor systems were prior to the arrival of the fire service with the 50th 
percentile response time of 5 minutes (9 minutes total including 4 minutes to begin the response).   
All of the engineered floor system experiments, including the maximum times to collapse 
occurred prior to the arrival of the 90th percentile response time of 11 minutes (15 minutes total 
including 4 minutes to begin the response).  The average collapse time of the dimensional lumber 
floor system experiments also occurred at the time of the arrival of the fire service with the 90th 
percentile response which emphasizes the importance of protecting all types of flooring systems, 
including dimensional lumber.  Regardless of the unprotected floor system type no factor of 
safety can be assumed, doubling the average collapse time of all of these experiments still results 
in a collapse time that could occur within the operational timeframe of any fire department with 
any response time.  It is important to note that these times are when the fire service would arrive 
to begin their operations, not the time it takes to mitigate the incident.   
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Figure 36.
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Figure 39.
 

Figure 40.
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ventilated fires compromised the structural stability of the floor systems tested. The collapse in 
some cases occurred very rapidly and without significant warning. It is imperative for the fire 
service to understand that any perceived weakness of the structure in the area of operation may in 
fact be a late indicator of the damage that has already occurred. In order for a perceived 
weakness to be present the floor system’s stability and/or strength has already been 
compromised. In these situations firefighters must make every attempt to conduct a controlled 
evaluation of the structure from below prior to continued operations.  
 
On a span of 16 to 20 feet, just as the ones used in these experiments, it can be difficult to detect 
the sag of the floor as you crawl on top of it.  Firefighters are often looking for warning signs 
that collapse is about to happen.  Table 24 details the deflection 5 seconds prior to collapse for 
each of the 4 floor systems.  The dimensional lumber floor (16 ft. span) deflected the least prior 
to collapse and the steel C-joist floor (20 ft. span) deflected the most prior to ultimate collapse.  
Figure 41 gives a relative depiction of what a 20 ft. floor span would look like from the side if it 
were deflected 6 and 12 inches from flat.    
 
Table 24.  Deflection Prior to Collapse 
Floor System Deflection 5 seconds prior to collapse (in.) 
Dimensional Lumber (2 x12) 5.1 5.2 
Engineered Wood I-Joist (12 in.) 10.7 10.9 12.0 12.8 
Steel C-Joist (12 in.) 14 +* 14 +* 
Parallel Chord MPCWT 13.6 10.4 
* NOTE:   Instrument maximum was 14 in 
 
 
 
 
 
 
 
 
 

7.6. Temperatures on first floor prior to collapse 
 
Temperature may not be an important factor in determining the safety of the firefighters 
operating on the floor above a basement fire.  The layout of the first floor indicating the 
temperature measurement locations as well as the section of the floor that collapsed first in every 
experiment (shaded in orange) is shown in Figure 42.  Firefighters operating near the top of the 
stairs would feel the highest temperatures and elevated temperatures would be felt on the 
remainder of the first floor at the 3 ft. elevation (Figure 43 through Figure 45).  Most 
experiments remained tenable for firefighters operating on the first floor as long as it was for a 
short period of time.  Temperatures above 250 °C (500 °F) would not be bearable for a period of 
time much beyond a couple minutes.  There did not appear to be a repeated temperature spike in 
the corner location, above the collapse area prior to the time of collapse that could be used as a 
predictor. 

0 in. deflection 
6 in. deflection 

12 in. deflection 

Figure 41.  Relative depiction of 0, 6 and 12 in. deflections on a 20 ft. span
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Figure 44.
 

Figure 45.
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      3.2 Fire blocking in accordance with Section R302.11.1 shall be installed along the perimeter of 
the unprotected portion to separate the unprotected portion from the remainder of the floor 
assembly. 

4. Wood floor assemblies using dimension lumber or structural composite lumber equal to or greater 
than 2-inch by 10-inch nominal dimension, or other approved floor assemblies demonstrating 
equivalent fire performance. 

 
Much like other new code language there are some areas that are left up to interpretation as a 
result of several compromises.  Some of the experiments were conducted to examine the impact 
of the code change on structural collapse hazards to the fire service. 

8.1. Exception 4 
 
This study can begin to address Exception 4 of the proposed change.  First it allows 2-inch by 
10-inch nominal dimensional lumber or larger to be unprotected.  This sets the benchmark for 
other floor assemblies.  The floor furnace and the full-span field experiments can help to define 
this benchmark.  The dimensional lumber floor furnace experiment with a modified load failed at 
18:43 and the dimensional lumber floor with 100% of the design load failed at 7:00.   
 
The full-span field experiments with dimensional lumber collapsed at 11:09 and 12:45 after 
ignition of the fuel load respectively.  The first experiment assumes having sufficient ventilation 
to allow the fuel load and floor system to burn at near optimal levels which could be considered 
the worst case scenario.  The second simulated operations of the fire department that began at 8 
minutes after ignition.   
 
Conservatively, taking the slowest time to collapse (18:43), it can argued that this is not an 
acceptable level of performance because 18:43 can be justified as being within the fire services 
operation timeframe as described in the previous section, which provides little to no factor of 
safety.  The intent of the code states “The purpose of this code is to establish the minimum 
requirements to safeguard the public health, safety and general welfare through structural 
strength, means of egress facilities, stability, sanitation, adequate light and ventilation, energy 
conservation, and safety to life and property from fire and other hazards attributed to the built 
environment and to provide safety to fire fighters and emergency responders during emergency 
operations [IBC Chapter 1‚ Part 1‚ Section 101.3 & IRC Chapter 1, Part 1, Section R101.3 ].  
Based on the collapse times from these experiments there is little to no safe operating time for 
firefighters in a structure with an unprotected dimensional lumber floor system. 
 
The final floor furnace experiment with old dimensional lumber raises the question as to whether 
all dimensional lumber can be adequately described by its nominal dimensions.  The older 
reclaimed dimensional lumber didn’t reach failure until 160% longer than the modern 
dimensional lumber even though its dimensions were actually smaller.  While the fire service 
suggests that the factor of safety provided by older dimensional lumber was acceptable the 
experimental results show that new dimensional lumber is significantly different in terms of 
performance under fire conditions.  Protecting the dimensional lumber as well as engineered 
lumber floor systems in future code requirements would eliminate this fire performance change 
in dimensional lumber and provide a more reasonable factor of safety for the fire service. 
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8.2. Equivalence 
 
Another code implication is the definition of “equivalent” as used in the following section, “Floor 
assemblies, not required elsewhere in this code to be fire resistance rated, shall be provided with a ½ 
inch gypsum wallboard membrane, 5/8 inch wood structural panel membrane, or equivalent on the 
underside of the floor framing member.”  Two different products, utilizing two different 
technologies, were tested to see if they provide equivalent protection to an engineered floor 
system with ½ in. gypsum wallboard.  The benchmark for this equivalency is interpreted to be 
approximately 26:45 which is the approximate performance of the three engineered floor systems 
experimented with ½ in. gypsum board protection (Table 26). 
 
The first technology tested for equivalence was a spray applied fire retardant coating.  This 
product is designed to be applied on wood to improve the flame spread properties of the wood 
product.  This technology only provided minimal impact to extending the time to structural 
collapse, and it did not come close to providing “equivalent” protection to gypsum wallboard 
(Table 26). 
 
The second technology tested for equivalence was a spray applied intumescent coating which 
was UL Classified for Fire Resistance for multiple applications when applied to steel sections.  
This product is currently not designed for use on wood.  While this technology extended the 
collapse time by almost 200% it did not reach the protection level of gypsum wallboard.  
Currently, this product is cost prohibitive when compared to the cost of gypsum wallboard and 
its compatibility with wood is unknown but thought to be degrading over time due to its 
chemical composition. 
 
Table 26.  Collapse times of engineered floor systems with protection technologies 

Assembly Protection Collapse Time 
Engineered I joist (12 inch deep) None 6:00 

 
Engineered I joist (12 inch deep) 1/2 inch regular 

gypsum wallboard 
26:45 

Parallel chord truss with steel gusset 
plate connections (14 inch deep) 

1/2 inch regular 
gypsum wallboard 

29:15 

Parallel chord truss with glued 
connections (14 inch deep)  

1/2 inch regular 
gypsum wallboard 

26:45 

 
Engineered I joist (12 inch deep) Spray applied fire 

retardant coating 
8:40 

Engineered I joist (12 inch deep) Spray applied 
intumescent coating 

17:50 

 
When determining equivalence it is important to select the appropriate test method.  Coatings 
that improve the flame spread properties of wood do not necessarily improve the structural 
integrity of the floor system when exposed to fire.  A common test method for flame spread is 
the Steiner Tunnel, ASTM E84.  A common test method for structural integrity is the floor 
furnace, ASTM E119.  Structural integrity is the purpose of this section of the code therefore any 
determination of equivalence should use a test method such as ASTM E119. 
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UL conducted several series of experiments to examine basement fires and collapse hazards 
posed to the fire service.  There are several tactical considerations that result from this research 
that firefighters can use immediately if applicable to them.   
 

 Collapse times of all unprotected wood floor systems are within the operational time 
frame of the fire service regardless of response time.   

 Size-up should include the location of the basement fire as well as the amount of 
ventilation.  Collapse always originated above the fire and the more ventilation available 
the faster the time to floor collapse. 

 When possible the floor should be inspected from below prior to operating on top of it.  
Signs of collapse vary by floor system; Dimensional lumber should be inspected for joist 
rupture or complete burn through, Engineered I-joists should be inspected for web burn 
through and separation from subflooring, Parallel Chord Trusses should be inspected for 
connection failure, and Metal C-joists should be inspected for deformation and subfloor 
connection failure. 

 Sounding the floor for stability is not reliable and therefore should be combined with 
other tactics to increase safety. 

 Thermal imagers may help indicate there is a basement fire but can’t be used to assess 
structural integrity from above. 

 Quickly descending the stairs to find relief at the bottom was not possible, temperatures 
at the bottom of the basement stairs where often worse than the temperatures at the top of 
the stairs. 

 Coordinating ventilation is extremely important.  Ventilating the basement created a flow 
path up the stairs and out through the front door of the structure, almost doubling the 
speed of the hot gases and increasing temperatures dramatically. 

 Floor sag is a poor indicator of floor collapse.   
 First floor gas temperatures can be a poor indicator of conditions below, especially when 

remote from the top of the stairs. 
 Hoselines should be available when opening up void spaces to expose wood floor 

systems.  
 
Understanding the impact of span, fuel load, ventilation and fire location to system failure. 
 
These variables were assessed through several different types of experiments as well as within 
the experimental series.  Span was varied between 12 ft. in the component furnace experiments 
to 20 ft. in the full span field and laboratory experiments.  Fuel load was varied from a fuel load 
representative of what could be found in a basement to a standard furnace exposure to igniting 
just the floor system itself.  Ventilation was varied from a door and 3 open windows to all 
ventilation openings closed.  Fire location was varied between in the basement and above a 
protective ceiling.  The analysis of all of these variables was conducted with respect to system 
failure times and mechanisms. 
 
Examine different fire protection methods and develop data to assess their effectiveness 
and working with the engineered products manufacturers design products to meet fire 
performance and mechanical performance standards. 
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Three technologies were utilized to try to improve the fire performance of engineered floor 
systems, gypsum board, fire retardant coating and intumescent coating.   Gypsum board applied 
to the bottom chord of an engineered I-joist floor system extended the collapse time from 6:00 to 
26:45.  The next technology tested was a spray applied fire retardant coating.  This product is 
designed to be applied on wood to improve the flame spread properties of the wood product.  
This technology only provided minimal impact to extending the time to structural collapse, and it 
did not come close to providing “equivalent” protection to gypsum wallboard. 
 
The third technology tested for equivalence was a spray applied intumescent coating which was 
UL Classified for Fire Resistance for multiple applications when applied to steel sections.  This 
product is currently not designed for use on wood.  While this technology extended the collapse 
time by almost 200% it did not reach the protection level of gypsum wallboard.  Currently, this 
product is cost prohibitive when compared to the cost of gypsum wallboard and its compatibility 
with wood is unknown but thought to be degrading over time due to its chemical composition.  
This technology has the potential to provide adequate protection but further research needs to be 
conducted to understand its impact on wood over time and the cost needs to be brought down 
considerably to make it a cost effective option. 
 
Improve occupant safety by allowing for longer egress times. 
 
By applying a protective layer of gypsum board to unprotected floor systems, not only does it 
extend the time to collapse but it also separates the large fuel load that is the floor system from 
the fuel load in the room.  When unprotected the combustible floor system is in the ideal location 
above the fire to quickly spread and grow the fire when sufficient air is available.  This 
separation or protection allows for slower fire growth and longer times for occupant egress. 
 
Provide data to substantiate code changes related to fire rated engineered floor systems to 
result in improved building fire safety. 
 
Based on some previous research by UL and others as well as concerns from the fire service a 
code change to the 2012 International Residential Code has gone into effect that was the result of 
compromises made between all of the parties that worked to develop the final proposal.  This 
change requires gypsum wallboard protection, or equivalent, of engineered lumber floor systems 
in new homes.  This research project examined what “equivalent” could mean and if there were 
technologies that could meet this definition.  Intumescent coating technology showed promise 
however it did not provide equivalent protection as tested.  There are several exceptions in the 
code language that where examined in this research project.  One exception is that there is no 
protection required for dimensional lumber floor systems.  This research study provides data to 
substantiate the need to protect dimensional lumber floor systems to improve firefighter safety.  
The second exception examined was the allowance of an exposed 80 ft2 exposed area.  Limiting 
the fuel load in relation to the exposed floor area or placing the exposed floor area in a separate 
room from the finished section of the basement would increase the safety when the floor area 
must be exposed.   
 
Effectively model the impact of fire insult on engineered flooring systems and provide a 
valuable test database to the fire community for validation of computer-aided engineering 
models.   
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Modeling was completed utilizing two models, a computational fluid dynamics model, Fire 
Dynamic Simulator (FDS) and a finite element model, ANSYS.  Fire behavior of a basement fire 
experiment was modeled utilizing FDS and the structural performance of wood beams and a 
floor system were simulated utilizing the finite element model.  The reports included in the 
appendix provide a test data database for the fire community to validate computer-aided 
engineering models. 

10. Future Research Needs: 
 
To date residential floor systems have been a subject that has been very thoroughly tested.  
Future research would be needed to make sure that the fire service is receiving the proper 
message from the research and that they are implementing the results.  Another fire service 
research project should be to examine the effect of applying water through an exterior basement 
opening on the conditions as they pertain to tenability at the top of the stairs and the rest of the 
structure.  Since operating on top of a wood floor system involved in fire is dangerous there 
should be an analysis done on alternative suppression strategies to increase firefighter safety.  
Many fire departments would flow water in through a basement window or doorway to begin to 
suppress the fire however other departments refuse to do so claiming that the conditions inside 
the structure would be made untenable for any occupants inside. 
 
Additional research should be conducted to further understand how dimensional lumber has 
changed over time in regards to structural stability.  Newer lumber growth methods impact on 
fire performance should be further investigated. 
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Appendix A.  Fire Resistance Tests on Wood and Composite Wood 
Beams 
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Appendix B.  Fire Service Collapse Hazard Floor Furnace 
Experiments 
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Appendix C.  Full-Scale Floor System Field and Laboratory Fire 
Experiments 
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Appendix D.  5. Basement Fire Growth Experiments in Residential 
Structures 
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Appendix E.  Modeling the Thermal and Structural Behavior of 
Wood Beams in a Fire Environment 
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Appendix F.  Fire Modeling of Basement with Wood Ceiling 
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